Copositive and semidefinite relaxations of the quadratic assignment problem

نویسندگان

  • Janez Povh
  • Franz Rendl
چکیده

Semidefinite relaxations of the quadratic assignment problem (QAP ) have recently turned out to provide good approximations to the optimal value of QAP . We take a systematic look at various conic relaxations of QAP . We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it is hard to optimize over this cone, we also look at tractable approximations and compare with several relaxations from the literature. We show that several of the well-studied models are in fact equivalent. It is still a challenging task to solve the strongest of these models to reasonable accuracy on instances of moderate size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, 235(1):25-42, 2000]...

متن کامل

Semidefinite relaxations of the quadratic assignment problem in a Lagrangian framework

In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...

متن کامل

Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB — a quadratic assignment problem library. Journal on Global Optimiza...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems

In this paper, we present a simple algorithm to obtain mechanically SDP relaxations for any quadratic or linear program with bivalent variables, starting from an existing linear relaxation of the considered combinatorial problem. A significant advantage of our approach is that we obtain an improvement on the linear relaxation we start from. Moreover, we can take into account all the existing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009